Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Nazim Mir-Nasiri

Nazim Mir-Nasiri

Nazarbayev University, Kazakhstan

Title: Human - exoskeleton interaction via tactile sensors for the motion assistance

Biography

Biography: Nazim Mir-Nasiri

Abstract

The paper describes conceptual design and control of a new fully autonomous lower limb exoskeleton system via a number of tactile sensors. The aim of the exoskeleton is to support the subject weight and provide an additional strength and endurance for the subject. The designed exoskeleton can decouple the weight/mass carrying function of the subject/human from its forward motion function. This newly proposed approach effectively reduces the power and size of propulsion motors and thus the overall weight, cost of the system. The interaction between the system and subject takes place by means of two types of sensors. The system measures the pressure applied by the subject’s feet on the ground. If the pressure exceeds the set value the system blocks the motion at the knee joint by means of a passive air cylinder across the knee joint. This data is used by the PID controller to force the exoskeleton to follow precisely the motion of the subject legs in swinging motion by means of hip and knee motors. The mechanical structure of each leg has six degrees of freedom: four at the hip, one at the knee and one at the ankle. Only one degree at the hip and one at the knee are motor driven. In Fig. 1: 1 is a seat; 2 and 3 are hip and knee motors; 4 is an ankle join; 5 and 6 are bars to support the electronics and power supply;7 are leg belts; 8 is a hip lateral motion mechanism; 9 is an air cylinder.This exoskeleton is power efficient because the system motors are not used to support the subject weight like in most of the existing exoskeleton designs.