Biography
Biography: Olga Kamynina
Abstract
Self-propagating high-temperature synthesis (SHS), or synthesis by combustion, is based on exothermic reactions between the elements and/or compounds. This technique is advantageous over existing processes by (i) no need for external energy supply, (ii) high reaction rates, and (iii) simplicity of facilities. SHS can be carried out in the mode of either layer-by-layer combustion or thermal explosion (volume reaction). The applicability of SHS method to fabrication of materials with desired properties was demonstrated in [1-4]. In this communication, I will report on some recent results on the combustion synthesis of Ti- and Ta-based materials. Due to unique combination of their properties, such materials are widely used in industry as structural and functional materials. This work aimed at exploring the feasibility of preparation of Ti–Al–Ta alloys from the elements in a mode of thermal explosion. In experiments, we studied the influence of the size/morphology of powders and mechanical activation of the powders on reaction mechanism and product patterning. Another goal was the deposition of multilayer ceramic Ti–C–Si coatings onto Ti and Ta substrates. Ti-Al-Ta-based alloys can be synthesized by thermal explosion without introduction of non-metal additives into the green mixture. SHS method can be readily applied to deposition of multilayer ceramic coatings onto a Ti and Ta substrate, without use of low-melting metal (intermediate layers). The use of SHS reactions for the purpose was found rather promising.