Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Matthias Wimmer

Munich University of Applied Sciences, Germany

Title: A semi-sequential actuator design for multipoint tools

Biography

Biography: Matthias Wimmer

Abstract

Multipoint tooling is a reconfigurable mold making technology that replaces solid moulds with an array of individually adjustable pins to create a discrete representation of the desired mould geometry. These pins have to be adjusted to very precise heights in reasonable time with manageable tool complexity to create a competitive new technology. Leadscrew driven pin actuation has proven to be precise, reliable and cost efficient. The height adjustment of the individual pins thereby can be either direct, with dedicated drives for each pin, or sequential, with one actuator used for all pins. A semi-sequential adjustment design is introduced to combine the advantages of both these designs. The passive, sensor less, pins in this concept are adjusted with an array of actuator devices. A setup algorithm ensures precise adjustment of each pin. The connection between the pins and the actuators is realized with a specifically designed form lock claw clutch. To ensure reliable function of this clutch the coupling process and parameters influencing coupling performance are analysed. Different methods of measurement are tested and evaluated to ensure the coupling’s performance. Subsequently sensitivity analysis is used to evaluate the influence of each parameter on the coupling performance and create a reduced parameter set. A Metamodell of Optimal Prognosis (MOP) is derived and used to optimize the actuator parameters. Finally, the robustness of the optimized system is tested. After parameter optimization, the design operates reliable and can reduce the total costs of a multipoint tool significantly.